
Eurographics Symposium on Rendering 2013
Nicolas Holzschuch and Szymon Rusinkiewicz
(Guest Editors)

Volume 32 (2013), Number 4

An Area-Preserving Parametrization for Spherical Rectangles

Carlos Ureña1 and Marcos Fajardo2 and Alan King2

1TARVIS Research Group, Dpt. Lenguajes y Sistemas Informáticos, Universidad de Granada, Spain.
2Solid Angle, Madrid, Spain.

Abstract
We present an area-preserving parametrization for spherical rectangles which is an analytical function with domain
in the unit rectangle [0,1]2 and range in a region included in the unit-radius sphere. The parametrization preserves
areas up to a constant factor and is thus very useful in the context of rendering as it allows to map random sample
point sets in [0,1]2 onto the spherical rectangle. This allows for easily incorporating stratified, quasi-Monte Carlo
or other sampling strategies in algorithms that compute scattering from planar rectangular emitters.

Categories and Subject Descriptors (according to ACM CCS): I.3.7 [Computer Graphics]: Three-Dimensional
Graphics and Realism—Color, shading, shadowing, and texture

1. Introduction

The map M described in this paper can be used in a number of
applications which require numerical integration of functions
whose domain is a spherical rectangle. In particular, this
is the case of numerical computation of radiance directly
reflected (or scattered) from a point due to illumination from
a planar rectangular light source, a common task in realistic
rendering systems.

The motivation for this work is two-fold. First, planar rect-
angles are probably the most commonly used light sources
in applications such as production rendering for animation,
visual effects, studio lighting and other fields. And second,
the simplest and most commonly used method to sample
these rectangular lights, surface area sampling, is surprisingly
poor in many practical cases. More robust samplers based
on combining surface area with BRDF via multiple impor-
tance sampling can do a better job but they are still far from
optimal.

Our map can be used to reformulate the reflection integral
as an integral in the sphere by using a change of variables
which yields an integrand with lower variation. This leads to
better stochastic estimators with lower variance, especially
when the distance from the point to the rectangle is small or
not too big relative to the size of the rectangle.

In order to design M, we will use a two-step approach sim-
ilar to the one used by Arvo [Arv95] for spherical triangles,
but adapted to spherical rectangles. To our knowledge, this is
the first time such an analytical map is described.

2. Previous work

The need for importance sampling in direct lighting com-
putation is well described in the literature [SW92, SWZ96].
Researchers have focused on simple planar polygons in the
hope that their simplicity makes it easy to design efficient
importance and/or stratified sampling strategies. The sim-
plest technique is to use area-preserving parametrizations, or
maps, from the unit square onto the planar polygon. These
maps allow the implementation of importance sampling with
a probability density function (pdf) proportional to subtended
solid angle. Combined with stratified or Quasi-Monte Carlo
sampling, this yields lower variance estimators for radiance.

In the case of planar triangles, Wang [Wan92] described a
technique based on using area sampling on a planar triangle
which is tangent to the sphere, and obtained as a projection
of the original. While this contributes to smooth the inte-
grand, for points near the source perspective distortion can
be quite large and thus large errors may still arise. In his PhD
thesis [Wan93], Wang stated that solid angle sampling for
rectangular light sources can be done by using numerical in-
version of the cumulative solid angle function. While correct,
this can be quite slow for practical rendering.

The first exact analytic map for solid angle sampling of
polygons was described by Arvo [Arv95]. The algorithm is
quite efficient and simple to implement, and thus it is a useful
improvement over naive area sampling.

Ureña described approximate adaptive cosine weighted
sampling for spherical triangles [Ure00]. This technique al-

c© 2013 The Author(s)
Computer Graphics Forum c© 2013 The Eurographics Association and Blackwell Publish-
ing Ltd. Published by Blackwell Publishing, 9600 Garsington Road, Oxford OX4 2DQ,
UK and 350 Main Street, Malden, MA 02148, USA.

C. Ureña & M. Fajardo & A. King / An Area-Preserving Parametrization for Spherical Rectangles

lows to position stratified random samples in a spherical
triangle, and can be easily extended to rectangles. However,
the method does not provide a map but a sample generation
algorithm, thus its utility is limited as it cannot be used with
random, quasi-random or blue noise sample points.

Arvo described an area-preserving map for cosine-
weighted sampling of arbitrary planar polygons [Arv01]. This
technique is quite general, and it is based on a division of
the spherical polygon in sectors between meridians through
each vertex. Each sector is sampled by using a lower-order
polygonal approximation for the solid angle times cosine
factor. The preprocessing needed makes this approach far
more complex and probably slower than the use of simple
analytical functions.

3. Properties of map M

Let us consider a 3D planar rectangle P defined by one of
its vertices s and two perpendicular vectors ex and ey. We
also consider a unit radius sphere O whose centre is a known
point o.

We define Q as the region obtained by projecting P onto
O. This region is the intersection of two spherical digons or
lunes. We define A as the area measure in a planar surface
and σ as the solid-angle measure in a spherical surface.

We want to obtain a map or function M from [0,1]2 to Q
such that any two regions in [0,1]2 with similar area map to
two regions in Q with similar subtended solid angle. That is,
for any region T ⊆ [0,1]2, it holds that:

A(T) =
1

σ(Q)
σ(M(T)) (1)

The function M maps any pair (u,v) ∈ [0,1]2 to a point q
on the spherical rectangle Q. We define p as the projection
of q on the planar rectangle P in the reference system R (see
Figure 1).

The point q = M(u,v) can be expressed in spherical coor-
dinates by using its colatitude or polar angle β (which is a
function of both u and v), and its longitude α (a function of u
only). The cartesian coordinates of M(u,v) relative to R can
be expressed in terms of u and v using functions α and β:

M(u,v) ≡ o + sinαsinβx + cosβy +

cosαsinβz (2)

where x, y, z are the axes of local reference system R.

4. Computation of point p

In this section we will compute the coordinates of point p
relative to R. To emphasize their dependence on u and v, the
X and Y coordinates will be denoted by xu and yv respectively.
We first need to find the solid angle of Q which is needed to
compute xu.

o
p

P

q

Q

o

x

z

yx0

x1
y0

y1

z0

ex

ey

s

P
p

xu

yv

Figure 1: Spherical rectangle Q and planar rectangle P
aligned with local reference system R.

4.1. Local reference system R

The layout of coordinate system R is critical to facilitate
computing the angles and formulas for xu and yv. R is located
at point o with its x and y axes aligned with the ex and ey
edges of P. We always select z pointing away from P (see
Figure 1). The limits of P relative to R can be obtained by
simple dot products:

x0 ≡ d ·x y0 ≡ d ·y z0 ≡ d · z
x1 ≡ x0 + ‖ex‖ y1 ≡ y0 + ‖ey‖

where d ≡ s− o. The four vertices of P relative to R are
denoted by v00,v01,v10 and v11, where vi j ≡ (xi,y j,z0).

4.2. Solid angle subtended by Q

The solid angle subtended by Q can be expressed as:

A(Q) = γ0 + γ1 + γ2 + γ3 − 2π

where γi = arccos(−ni ·ni⊕1). The four unit normal vectors
n0,n1,n2 and n3 can be obtained as the normalized cross
product between the vi j vectors:

n0 ≡ v00×v10
‖v00×v10‖ n1 ≡ v10×v11

‖v10×v11‖
n2 ≡ v11×v01

‖v11×v01‖ n3 ≡ v01×v00
‖v01×v00‖

These normal vectors are depicted in Figure 2. There are also
four angles ϕ0,ϕ1,θ0,θ1 such that:

n0 = cosθ0z + sinθ0y
n1 = cosϕ1z + sinϕ1x
n2 = cosθ1z + sinθ1y
n3 = −cosϕ0z − sinϕ0x

(3)

4.3. Computing xu

As in [Arv95], we use a spherical rectangle Qu ⊆ Q which is
chosen in such a way that

A(Qu) = A(Q)u (4)

Qu is bounded by planes through o perpendicular to n0,
mu, n2 and n3. Vector mu is in the plane y = 0 and thus can
be written as:

mu = cosϕuz + sinϕux (5)

c© 2013 The Author(s)
c© 2013 The Eurographics Association and Blackwell Publishing Ltd.

C. Ureña & M. Fajardo & A. King / An Area-Preserving Parametrization for Spherical Rectangles

γ
0

γ
1

γ
2

γ
3

γ'
1

γ'
0

Qumun1 n3

n2

n0

q

Figure 2: Spherical rectangles Q and Qu. As u goes from 0
to 1, mu rotates from −n3 to n1 (right to left in the figure).

Note that ϕu is an angle which depends on u, varies from ϕ0 to
ϕ1 and determines the value of xu. As shown in Figure 2, the
internal angles of Qu are γ2, γ3 (shared with Q), and γ

′
0 and γ

′
1

(where γ
′
0 ≡ arccos(−n0 ·mu), and γ

′
1 ≡ arccos(−n2 ·mu)).

We want to obtain the value xu, which depends on cosϕu.
In order to find an expression for the latter we begin by
expanding the area of Qu:

A(Qu) = γ
′
0 + γ

′
1 + γ2 + γ3 − 2π

= arccos(−n0 ·mu) + arccos(−mu ·n2)

+γ2 + γ3 − 2π (6)

By using (3) and (5), we can expand n0 ·mu and n2 ·mu,
obtaining:

n0 ·mu = b0 cu n2 ·mu = b1 cu (7)

where, for simplicity, we have used these definitions:

b0 ≡ cosθ0 b1 ≡ cosθ1 cu ≡ cosϕu

From (3) we deduce that b0 = n0 · z and b1 = n2 · z. Expand-
ing equality (6) using (4) and (7), we obtain:

A(Q)u = arccos(−b0 cu) + arccos(−b1 cu)

+γ2 + γ3 − 2π (8)

Appendix A shows how to express cu as a function of u. With
some additional derivations it is easy to show that:

xu = − cu
z0√

1− c2
u

4.4. Computing yv

As shown in Figure 3, point p is in the vertical line L defined
by x = xu and z = z0, thus it can be written as (xu,yv,z0)
where yv is a function of v which increases from y0 to y1 as v
goes from 0 to 1. More exactly, p is in the segment between
a0 ≡ (xu,y0,z0) and a1 ≡ (xu,y1,z0).

In order to preserve the desired properties of M, Arvo
[Arv95] showed that equal changes in v must induce through
M equal changes in sinβ. This implies that, in order to find q,

o z

x
y

a0

p

L

a1

o

y0

y1

d 1

h0

h1

hv

yv

Figure 3: Vectors a0 and a1, and line L (left), and a view of
the plane spawned by a0 and a1 (right)

we can linearly interpolate its Y coordinate (denoted by hv)
between h0 and h1:

hv = h0 + v(h1−h0) (9)

where h0 (resp. h1) is the sine of the angle between a0 (resp.
a1) and the plane y = 0:

h0 ≡
y0
‖a0‖

=
y0√

d2 + y2
0

h1 ≡
y1
‖a1‖

=
y1√

d2 + y2
1

and where d ≡
√

x2
u + z2

0 is the distance from L to the Y axis.
Thus yv can be expressed as a function of hv as follows:

yv = hv
d√

1−h2
v

We now know all local coordinates of p, which we can express
in world coordinates as:

o + xu x + yv y + z0 z

5. Implementing and using map M

5.1. Algorithm overview

Appendix B provides a reference algorithm for evaluating
map M which is divided in two steps. The first one stores
values that are constant for all samples taken from a partic-
ular configuration of a planar rectangle and point o (that is,
depending on the spherical rectangle). The second step uti-
lizes the values stored in this structure as well as the values
u and v to generate the point p on the planar rectangle. This
allows an efficient implementation where the values from
step 1 are precomputed and amortized over a number of calls
to evaluate M.

Figure 5(c) shows the application of this algorithm to a set
of 256 Hammersley points.

5.2. Sampling a PDF proportional to solid angle

Let us consider the computation of the reflected radiance at
direction ωo at a point o (with normal no) due to light emitted
from a rectangular light source P, (with normal np, pointing
from P towards o), with constant emitted radiance l. This
radiance is exactly:

Lr(o,ωo) = l
∫

p∈P
fr(o,ωi,ωo)G(p,o)dA(p)

c© 2013 The Author(s)
c© 2013 The Eurographics Association and Blackwell Publishing Ltd.

C. Ureña & M. Fajardo & A. King / An Area-Preserving Parametrization for Spherical Rectangles

where the geometric term is defined as:

G(p,o) ≡ cos(np,ωi) cos(no,−ωi)

‖p−o‖2

and where ωi is the unit-length vector from p to o. There
are various ways of estimating this integral, such as with
area sampling, solid angle sampling, or by combining either
of these with other distributions using Multiple Importance
Sampling (MIS) [Vea97].

Area sampling: A set of n points pk are distributed in P
with probability proportional to area A(P). This leads to the
estimator:

Lr(o,ωo) ≈
l

nA(P)

n−1

∑
k=0

fr(o,ωik ,ωo)G(pk,o)

Solid angle sampling: In this case, the probability measure
P is proportional to solid angle σ, more precisely:

dP(p) =
1

σ(Q)
dσ(q) =

1
σ(Q)

cos(np,ωi)

‖p−o‖ dA(p)

Thus we arrive at the following estimator, where the full
geometric term G(p,o) present in area sampling has been
replaced by a simpler cosine term of lower variation:

Lr(o,ωo) ≈
l

nσ(R)

n−1

∑
k=0

fr(o,ωik ,ωo) cos(no,−ωik)

Sampling probabilities Some applications (such as MIS)
require the probability density for having chosen a sample
point or direction through map M to be known. This proba-
bility varies with the sampling domain. We define pΩ(q) as
the probability for selecting point q in the spherical rectangle
Q, while we define pA(p) as the probability for selecting a
point p in the rectangle P. It holds that:

pΩ(q) ≡
dP
dσ

(q) =
1

σ(Q)

pA(p) ≡
dP
dA (p) =

1
σ(Q)

cos(np,ωi)

‖p−o‖2

6. Results

We have implemented this work in Arnold, a Monte Carlo
path tracer designed for production rendering [Faj10] which
makes heavy use of importance sampling techniques. Our
implementation of map M provides the importance sampler
an alternative sample distribution to the light-surface area-
based distribution that was previously used during next-event
estimation of direct lighting paths.

With regards to computational cost, sampling through M
requires more complex math than the simple linear math used
for generating surface area samples. And while not strictly a
part of the algorithm itself, clamping of the cu and xu interme-
diate values must also be performed to avoid producing NaN

or Inf values due to cumulative rounding errors in the floating
point math when lighting points that are at or very near the
light’s tangent plane (see Listing 3). However despite these
complexities, we have found that in practice there is no more
than a few percent performance hit compared to area sam-
pling in production scenes with rectangular area lights, and
that this overhead can be practically eliminated in efficient
implementations of the algorithm that employ fast numerical
approximations to some of the math. This negligible increase
to the cost of sampling is more than compensated for by the
larger reduction in rays required to achieve a similar level of
noise.

Figure 4 shows direct-lighting-only renderings of a sim-
ple scene with three lambertian spheres sitting on a plane
illuminated by a double-sided rectangular light source that
rests perpendicular to a lambertian ground. The light source
has been made invisible to camera rays to better reveal areas
of interest. The figure includes a false-color heatmap show-
ing the difference of these images to a converged reference.
From this heatmap it is clear that area sampling shows the
largest overall difference. This is especially evident in the re-
gions near the light source, where the division by the squared
distance in the geometric term required by area sampling
produces arbitrarily high sample weights.

This figure also shows how mapping M compares to the
spherical triangle sampling technique described in [Arv95].
We obtain a rectangular area for this by dividing the rectangle
into two triangles. To make sure the number of samples taken
is the same, we apply the method of direct lighting from many
luminaires described in [SWZ96] to choose one of these two
triangular lights with a probability that is proportional to the
contribution of each triangle in the solid angle subtended by
the spherical rectangle Q. We find that despite using the same
input set of samples and taking roughly the same amount of
processing time, our mapping does a better job of preserving
sample stratification, and thus shows slightly less noise.

Drawing samples exclusively from the surface of the light
is not the only possible way of estimating direct illumina-
tion. Samples from several distributions may be combined
via multiple importance sampling (MIS) to further reduce
the variance of Monte Carlo estimates, sometimes dramat-
ically [Vea97]. Figure 6 shows how combining each light
sample with an additional BRDF sample using MIS can re-
duce variance. While using MIS results in a tremendous re-
duction of noise in the contact region of the light with the
ground plane, it is not enough for area sampling to surpass
the solid angle sampling methods, and our spherical rectangle
sampling method still exhibits the least amount of noise.

Figure 7 shows the RMS error curves of these methods at
different sampling rates, measured from 1-megapixel renders
of our test scene. As can be seen from the chart, without
MIS both of the spherical sampling methods outperform area
sampling by several orders of magnitude, while using MIS
reduces this enough for area sampling to only require about

c© 2013 The Author(s)
c© 2013 The Eurographics Association and Blackwell Publishing Ltd.

C. Ureña & M. Fajardo & A. King / An Area-Preserving Parametrization for Spherical Rectangles

(a) Area sampling (b) Two spherical triangles (c) Spherical rectangle sampling

Figure 4: First row: Double-sided rectangular light resting on a ground plane. The light has been made invisible to camera rays
to better reveal areas of interest (9 paths/pixel). Second row: False colored difference to converged reference.

(a) Area sampling (b) Two spherical triangles (c) Spherical rectangle sampling
Figure 5: A set of 256 Hammersley points mapped to a spherical rectangle using different mappings and the same points
projected back onto the unit square, showing their distribution with respect to this planar area. For the solid angle-based
mappings, each cell in the superimposed red grid subtends the same solid angle.

twice as many samples as our method does to get similar
levels of noise. The spherical triangle method on the other
hand starts with the same error as ours at 1 sample per pixel,
yet its rate of convergence is worse. The reason being that it
does not preserve sample stratification as well. This allows
our method to get an equal amount of error with approxi-
mately 15% less samples in our test scene when compared
to spherical triangle sampling at 1024 samples per pixel, or
approximately 9% less samples when MIS is used.

Figure 8 shows how our mapping performs when used to
compute scattered radiance in isotropic participating media.
The absence here of the surface cosine term in the illumina-

tion integrand results in a nearly optimal sampling distribu-
tion. Any remaining noise is caused by either occlusion or
the one-dimensional volume integral.

7. Limitations and Future Work

While the presented mapping appears to have less variance
than traditional surface area sampling of quad lights in many
situations, it still has a few disadvantages. For example, it
is often useful in production to place an emission texture on
the surface of a light to control the detail of reflections or for
image-based lighting purposes. While it is relatively straight-
forward to combine texture-based importance sampling with

c© 2013 The Author(s)
c© 2013 The Eurographics Association and Blackwell Publishing Ltd.

C. Ureña & M. Fajardo & A. King / An Area-Preserving Parametrization for Spherical Rectangles

(a) Area + BRDF (b) Two spherical triangles + BRDF (c) Spherical rectangle + BRDF

Figure 6: First row: The same render tests from Figure 4 combined with BRDF sampling using MIS. Second row: False colored
difference between images from first row and a converged reference image.

1 5 10 50 100 500 1000
10-4

0.001

0.01

0.1

1

Number of light samples per pixel

R
M

S
E

Spherical rectangle HoursL
Two spherical triangles

Area sampling

1 5 10 50 100 500 1000
10-4

0.001

0.01

0.1

1

Number of light and BRDF samples per pixel Hcombined w�MISL

R
M

S
E

Spherical rectangle HoursL
Two spherical triangles

Area sampling

Figure 7: Relative error curves of the different light sampling techniques on a 1 megapixel render of the diffuse spheres scene
from figures 4 and 6.

c© 2013 The Author(s)
c© 2013 The Eurographics Association and Blackwell Publishing Ltd.

C. Ureña & M. Fajardo & A. King / An Area-Preserving Parametrization for Spherical Rectangles

(a) Area sampling (b) Solid angle sampling

Figure 8: Volume scattering from a single-sided rectangular
light (9 paths/pixel, 2 ray march steps per ray).

surface area sampling since the parameter spaces for the
texture and irradiance samples have a trivial mapping, we
have not proven whether this may be possible to do with solid
angle sampling as well.

Another weakness of our method (that is shared to a dif-
ferent degree by area sampling) is that it does not include
the cosine term present in the estimator for reflected radiance
at a surface [Arv01] [Ure00]. This can result in an excess
number of samples near the horizon, where they are likely to
end up being less important in the final estimate. Including
the cosine term in the mapping is worthy of future study.

Finally, surface area mappings exist which are capable
of dealing not only with rectangles, but the larger family
of planar convex quadrilaterals [AN07]. We would like to
explore the feasibility of extending our technique to include
convex quadrilaterals as well.

Acknowledgements

We would like to thank Solomon Boulos, Eric Haines, Thiago
Ize, Chris Kulla, Anders Langlands, Emmanuel Turquin and
Oscar Anson for their helpful comments in reviewing early
drafts of this work. We would also like to thank the anony-
mous reviewers for their suggestions. Finally, we would like
to dedicate this work to Jim Arvo whose pioneering ray-
tracing and sampling work inspired so many of us.

References
[AN07] ARVO J., NOVINS K.: Stratified sampling of convex

quadrilaterals. Journal of Graphics, GPU, and Game Tools 12, 2
(2007), 1–12. 7

[Arv95] ARVO J.: Stratified sampling of spherical triangles. In
Proceedings of the 22nd annual conference on Computer graphics
and interactive techniques (1995), ACM, pp. 437–438. 1, 2, 3, 4

[Arv01] ARVO J.: Stratified Sampling of 2-Manifolds. In State of
the Art in Monte Carlo Ray Tracing for Realistic Image Synthesis.
SIGGRAPH 2001 Course Notes, volume 29 (2001), ACM. 2, 7

[Faj10] FAJARDO M.: Ray tracing solution for film production
rendering. In Global Illumination Across Industries. SIGGRAPH
2010 Course Notes (2010), ACM. 4

[SW92] SHIRLEY P., WANG C.: Distribution ray tracing: The-
ory and practice. In In Proceedings of the Third Eurographics
Workshop on Rendering (1992), pp. 33–43. 1

[SWZ96] SHIRLEY P., WANG C., ZIMMERMAN K.: Monte carlo
techniques for direct lighting calculations. ACM Transactions on
Graphics 15, 1 (1996), 1–36. 1, 4

[Ure00] UREÑA C.: Computation of irradiance from triangles
by adaptive sampling. Computer Graphics Forum 19, 2 (2000),
165–171. 1, 7

[Vea97] VEACH E.: Robust Monte Carlo Methods for Light Trans-
port Simulation. PhD thesis, Stanford University, 1997. 4

[Wan92] WANG C.: Physically correct direct lighting for distribu-
tion ray tracing. 307–313. 1

[Wan93] WANG C.: The Direct Lighting Computation in Global
Illumination Methods. PhD thesis, 1993. 1

Appendices

A. Expressing cu as a function of u

For simplicity, we define function φ as:

φ(x) ≡ xA(Q)− γ2− γ3 +2π

Equation (8) can be rewritten as:

φ(u) − arccos(−b0 cu) = arccos(−b1 cu)

We know that b0,b1 and cu are in the range (−1,1). In that range,
the arccos function is a bijection, thus we can apply its inverse to
both sides of the equation:

cos (φ(u) − arccos(−b0 cu)) = −b1 cu

Applying a well known trigonometric identity, we get:

−b1cu = cosφ(u) cos(arccos(−b0cu))

+ sinφ(u) sin(arccos(−b0cu))

and after further simplification:

−cosφ(u)b0cu + sinφ(u)
√

1−b2
0c2

u = −b1cu (10)

From equations (6) and (8) we deduce that φ(u) is equal to γ′0 + γ′1.
Both γ′0 and γ′1 are each strictly greater than π/2 and strictly smaller
than π, so we conclude that φ(u) is in the open interval (π,2π), thus
sinφ(u) < 0, and we can safely divide both sides in (10) by sinφ(u):√

1−b2
0c2

u =
cosφ(u)b0cu − b1cu

sinφ(u)

For simplicity, we define function f as:

f (u) ≡
cosφ(u)b0 − b1

sinφ(u)

and we get √
1−b2

0c2
u = cu f (u)

In this equality, both sides are positive, therefore sign(cu) =

sign(f (u)). Squaring both sides and solving for cu we arrive at:

cu =
sign(f (u))√

f 2(u)+b2
0

which is the expression for cu (in terms of u) we were looking for.

c© 2013 The Author(s)
c© 2013 The Eurographics Association and Blackwell Publishing Ltd.

C. Ureña & M. Fajardo & A. King / An Area-Preserving Parametrization for Spherical Rectangles

B. Algorithm source code

The variable names in the C-style code below were chosen to follow
the mathematical symbols in this paper as much as possible. Note that
it is possible to write a more optimized algorithm by precomputing
values that are constant for the planar rectangle but this is not shown
here for brevity.

struct SphQuad {

vec3 o, x, y, z; // local reference system ’R’

float z0, z0sq; //

float x0, y0, y0sq; // rectangle coords in ’R’

float x1, y1, y1sq; //

float b0, b1, b0sq, k; // misc precomputed constants

float S; // solid angle of ’Q’

}

Listing 1: Constants for the spherical rectangle Q.

SphQuadInit(SphQuad& squad,vec3 s,vec3 ex,vec3 ey,vec3 o) {

squad.o = o;

float exl = length(ex), eyl = length(ey);

// compute local reference system ’R’

squad.x = ex / exl;

squad.y = ey / eyl;

squad.z = cross(squad.x, squad.y);

// compute rectangle coords in local reference system

vec3 d = s - o;

squad.z0 = dot(d, squad.z);

// flip ’z’ to make it point against ’Q’

if (squad.z0 > 0) {

squad.z *= -1;

squad.z0 *= -1;

}

squad.z0sq = squad.z0 * squad.z0;

squad.x0 = dot(d, squad.x);

squad.y0 = dot(d, squad.y);

squad.x1 = squad.x0 + exl;

squad.y1 = squad.y0 + eyl;

squad.y0sq = squad.y0 * squad.y0;

squad.y1sq = squad.y1 * squad.y1;

// create vectors to four vertices

vec3 v00 = {squad.x0, squad.y0, squad.z0};

vec3 v01 = {squad.x0, squad.y1, squad.z0};

vec3 v10 = {squad.x1, squad.y0, squad.z0};

vec3 v11 = {squad.x1, squad.y1, squad.z0};

// compute normals to edges

vec3 n0 = normalize(cross(v00, v10));

vec3 n1 = normalize(cross(v10, v11));

vec3 n2 = normalize(cross(v11, v01));

vec3 n3 = normalize(cross(v01, v00));

// compute internal angles (gamma_i)

float g0 = acos(-dot(n0,n1));

float g1 = acos(-dot(n1,n2));

float g2 = acos(-dot(n2,n3));

float g3 = acos(-dot(n3,n0));

// compute predefined constants

squad.b0 = n0.z;

squad.b1 = n2.z;

squad.b0sq = squad.b0 * squad.b0;

squad.k = 2*PI - g2 - g3;

// compute solid angle from internal angles

squad.S = g0 + g1 - squad.k;

}

Listing 2: Precomputation of constants for the spherical
rectangle Q.

vec3 SphQuadSample(SphQuad squad, float u, float v) {

// 1. compute ’cu’

float au = u * squad.S + squad.k;

float fu = (cos(au) * squad.b0 - squad.b1) / sin(au);

float cu = 1/sqrt(fu*fu + squad.b0sq) * (fu>0 ? +1 : -1);

cu = clamp(cu, -1, 1); // avoid NaNs

// 2. compute ’xu’

float xu = -(cu * squad.z0) / sqrt(1 - cu*cu);

xu = clamp(xu, squad.x0, squad.x1); // avoid Infs

// 3. compute ’yv’

float d = sqrt(xu*xu + squad.z0sq);

float h0 = squad.y0 / sqrt(d*d + squad.y0sq);

float h1 = squad.y1 / sqrt(d*d + squad.y1sq);

float hv = h0 + v * (h1-h0), hv2 = hv*hv;

float yv = (hv2 < 1-eps) ? (hv*d)/sqrt(1-hv2) : squad.y1;

// 4. transform (xu,yv,z0) to world coords

return (squad.o + xu*squad.x + yv*squad.y + z0*squad.z);

}

Listing 3: Sample function using map M(u,v) that returns
point p in the planar rectangle P.

c© 2013 The Author(s)
c© 2013 The Eurographics Association and Blackwell Publishing Ltd.

