Importance Sampling of Area Lights in Participating Media

Christopher Kulla Marcos Fajardo

SOLIDANGLE

Outline

- Previous Work
- Single Scattering Equation
- Importance Sampling for Point Lights
- Importance Sampling for Area Lights
- Results

Previous Work - Unbiased Methods

- "Ray tracing volume densities" [Kajiya and Von Herzen, 1984]
- "Unbiased Global Illumination with Participating Media" [Raab et al, 2006]

Previous Work - Analytical Methods

- ▶ "A Practical Analytic Single Scattering Model for Real Time Rendering" [Sun et al, 2005]
- "An Analytical Solution to Single Scattering in Homogeneous Participating Media" [Pegoraro et al, 2009]
- "A Mathematical Framework for Efficient Closed-Form Single Scattering" [Pegoraro et al, 2011]

Previous Work - Realtime Shadowing

- "Interactive Volumetric Shadows in Participating Media with Single-Scattering" [Wyman et al, 2008]
- "Epipolar Sampling for Shadows and Crepuscular Rays in Participating Media with Single Scattering" [Engelhardt, 2010]
- ▶ "Real-Time Volumetric Shadows using 1D Min-Max Mipmaps" [Chen et al, 2011]
- "Voxelized Shadow Volumes" [Wyman et al, 2011]

Previous Work - Offline Methods

- "Radiance Caching for Participating Media" [Jarosz et al, 2008]
- "A Comprehensive Theory of Volumetric Radiance Estimation using Photon Points and Beams" [Jarosz et al, 2011]

Our Contributions

We will focus on importance sampling of single scattering (direct lighting):

- Unbiased
- No memory requirements
- Simple implementation
- Easy integration into any Monte Carlo based renderer

We want to evaluate radiance \boldsymbol{L} through a pixel

$$\overbrace{\vec{\omega}}^{\vec{\omega}} L(x,\vec{\omega}) =$$

Trace a ray into the homogeneous medium

$$L(x, \vec{\omega}) =$$

Point Light with power Φ

Point Light is a distance \boldsymbol{D} from the ray

Contributes to point t along the ray (measured from projection point)

Integrate contribution between \boldsymbol{a} and \boldsymbol{b}

Account for scattering coefficient σ_s

Account for extinction (σ_t) up to sample point

To account for change of variables, we add the signed distance Δ from ray origin

Finally, add extinction towards the light

Omit phase function from equation to simplify the notation

To evaluate the integral we take n samples along the line

How should these samples be distributed?

Density distribution

Place samples proportionally to attenuation?

Density distribution

- Place samples proportionally to attenuation?
- Attenuation is bounded by 1 and varies smoothly

Density distribution

- Place samples proportionally to attenuation?
- Attenuation is bounded by 1 and varies smoothly
- Lighting term varies as $1/r^2$

- Place samples proportionally to attenuation?
- Attenuation is bounded by 1 and varies smoothly
- Lighting term varies as $1/r^2$
- Dominates as we get closer to the light

- Place samples proportionally to attenuation?
- Attenuation is bounded by 1 and varies smoothly
- Lighting term varies as $1/r^2$
- Dominates as we get closer to the light

- Place samples proportionally to attenuation?
- Attenuation is bounded by 1 and varies smoothly
- Lighting term varies as $1/r^2$
- Dominates as we get closer to the light
- Can we design a pdf proportional to lighting term?

Goal is to get a pdf proportional to lighting term:

 $\mathsf{pdf}(t) \propto \frac{1}{D^2 + t^2}$

Integrate pdf to obtain cdf:

$$\mathsf{cdf}(t) = \int \frac{1}{D^2 + t^2} \, dt = \frac{1}{D} \tan^{-1} \frac{t}{D}$$

Use cdf to normalize over [a, b]:

$$\mathsf{pdf}(t) = \frac{D}{(\tan^{-1}\frac{b}{D} - \tan^{-1}\frac{a}{D})(D^2 + t^2)}$$

Use cdf to normalize over [a, b]:

Invert cdf to obtain distribution for $\xi_i \in [0, 1)$:

$$t_i = D \tan\left(\left(1 - \xi_i\right)\theta_a + \xi_i\theta_b\right)$$

Sample distribution is *equi-angular*

$$t_i = D \tan\left((1 - \xi_i)\,\theta_a + \xi_i \theta_b\right)$$

Results with 1 sample/pixel

Density sampling

Our method

Results with 16 samples/pixel

Density sampling

Our method

Sphere lights can use same equations!

Density sampling

Our method

What about general area lights?

Apply equi-angular sampling from center

Centered Equi-angular Sampling 256 samples / pixel

- Apply equi-angular sampling from center
- Better results than density sampling

Density Sampling 256 samples / pixel

- Apply equi-angular sampling from center
- Better results than density sampling
- But error increases away from the center
- Can be arbitrarily bad for wide lights

Centered Equi-angular Sampling 256 samples / pixel

Exchange integral over light area with line integral

Centered Equi-angular Sampling 256 samples / pixel

- Exchange integral over light area with line integral
- Choose the light sample point first

Centered Equi-angular Sampling 256 samples / pixel

- Exchange integral over light area with line integral
- Choose the light sample point first
- Then apply equi-angular sampling

Varying Equi-angular Sampling 256 samples / pixel

- Exchange integral over light area with line integral
- Choose the light sample point first
- Then apply equi-angular sampling
- Error is now more uniformly distributed

Varying Equi-angular Sampling 256 samples / pixel

- Some high variance speckles remain
- $\blacktriangleright \ 1/(D^2+t^2)$ has a singularity in D as well

Varying Equi-Angular Sampling

- Some high variance speckles remain
- $\blacktriangleright \ 1/(D^2+t^2)$ has a singularity in D as well
- Can mask these by clamping

$\mathsf{Clamp} < 0.05$

- Some high variance speckles remain
- $\blacktriangleright \ 1/(D^2+t^2)$ has a singularity in D as well
- Can mask these by clamping (biased!)

Clamp < 0.50 (too high!)

- Some high variance speckles remain
- $\blacktriangleright~1/(D^2+t^2)$ has a singularity in D as well
- Can mask these by clamping (biased!)
- Or by applying MIS

MIS with phase function sampling

Examples (64 samples / pixel)

Density sampling

Examples (64 samples / pixel)

Density sampling

Examples (16 samples / pixel)

Density sampling

Examples (16 samples / pixel)

Density sampling

Examples (16 samples / pixel)

Density sampling

Summary

- ► Equi-angular importance sampling for point and spherical lights
- Simple extension to arbitrary area lights
- Very simple implementation
- No restrictions on motion blur or visibility

Future Work

- Region close to light surface remains noisy
- Explore analytical solutions for rectangles and discs
- Incorporate phase function into estimate
- Apply to bidirectional path-tracing (camera behaves like a point light)

Thanks for listening!

SIGRAPHCOLL