
Production Ray Tracing of Feature Lines
Shinji Ogaki
Solid Angle

Iliyan Georgiev
Solid Angle

Figure 1: Our image-space algorithm can efficiently render feature lines of complex ray-traced objects. It supports arbitrary
camera projections and surface shaders, specular reflection and refraction, and allows for varying the line style across surfaces.

ABSTRACT
Automated feature line drawing of virtual 3D objects helps artists
depict shapes and allows for creating stylistic rendering effects.
High-fidelity drawing of lines that are very thin or have varying
thickness and color, or lines of recursively reflected and refracted
objects, is a challenging task. In this paper we describe an image-
based feature detection and line drawing method that integrates
naturally into a ray tracing renderer and runs as a post-process,
after the pixel sampling stage. Our method supports arbitrary cam-
era projections and surface shaders, and its performance does not
dependent on the geometric complexity of the scene but on the
pixel sampling rate. By leveraging various attributes stored in every
pixel sample, which are typically available in production renderers,
e.g. for arbitrary output variables (AOVs), feature lines of reflected
and refracted objects can be obtained with relative ease. The color
and width of the lines can be driven by the surface shaders, which
allows for achieving a wide variety of artistic styles.

CCS CONCEPTS
• Computing methodologies→ Rendering; Ray tracing;

KEYWORDS
ray tracing, non-photorealistic rendering, contours, feature lines
ACM Reference Format:
Shinji Ogaki and Iliyan Georgiev. 2018. Production Ray Tracing of Feature
Lines. In SIGGRAPH Asia 2018 Technical Briefs (SA ’18 Technical Briefs),
December 4–7, 2018, Tokyo, Japan. ACM, New York, NY, USA, 4 pages. https:
//doi.org/10.1145/3283254.3283273

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
SA ’18 Technical Briefs , December 4–7, 2018, Tokyo, Japan
© 2018 Association for Computing Machinery.
ACM ISBN 978-1-4503-6062-3/18/12. . . $15.00
https://doi.org/10.1145/3283254.3283273

1 INTRODUCTION
Two general approaches exist for drawing feature lines of rendered
3D objects: image-space and object-space based. Image-space meth-
ods are compatible with both rasterization and ray tracing and
work as a post-process on the pixel samples. Their main advantage
is that their performance is independent of the geometry tessella-
tion rate. This approach also allows for drawing contour lines of
reflected and refracted objects. One of its drawbacks is that varying
the style along the lines is difficult, e.g. for emulating thick-to-thin
ink strokes, which requires a distance parameterization along lines.

On the other hand, object-space line drawing is well-suited for
controlling stroke styles like scumbling and for rendering motion
lines. However, such methods do not easily support arbitrary cam-
era projections and have difficulties with reflection and refraction.
While they can handle thin or small objects well, their performance
decreases in proportion to the number of polygons being drawn.

The contour rendering method that we present in this paper op-
erates in image space, which is well suited for modern ray-tracing
production renderers that must often handle enormous amounts
of geometry and support arbitrary shaders and camera projections.
Our method can draw outlines of reflected and refracted objects,
which is important for film production as well as scientific illus-
trations. While some commercial renderers have some of these
capabilities, it is not clear in existing literature how to vary the line
width and color or how to handle intersections of lines with differ-
ent styles. Our method allows surface shaders to control the stroke
style, and renders line intersections accurately via an image-space
ray tracing approach. Figure 1 showcases the capabilities of our
implementation in the Arnold production ray tracer.

Another limitation of image-space contour drawing is the large
amount of samples required to render thin lines without excessive
aliasing and/or noise. We address this issue by imposing a minimum
image-space line width that preserves the contour appearance.

https://doi.org/10.1145/3283254.3283273
https://doi.org/10.1145/3283254.3283273
https://doi.org/10.1145/3283254.3283273

SA ’18 Technical Briefs , December 4–7, 2018, Tokyo, Japan Shinji Ogaki and Iliyan Georgiev

2 RELATEDWORK
The line drawing method of Choudhury and Parker [2009] inte-
grates well into a ray tracing framework, but its use is limited to con-
stant line width and color, and can produce artifacts where several
contours meet, as we discuss below. Their feature detection metric
also involves evaluating a number of additional “probe” samples
for every pixel sample, which adds redundant computation and can
become prohibitively expensive with the high pixel sampling rates
used in production rendering. Our approach effectively simplifies
their metric to a boolean decision, adds support for surface-varying
line styles, and avoids the expensive additional probe ray shooting.

Kim et al. [2008] proposed a stroke direction propagation algo-
rithm that uses multi-perspective projections to render reflections
and refractions in a line-art style. While this is an interesting ap-
proach, it only considers single reflection and double refraction.

Bauer [2017] addressed temporal flickering, which is a com-
mon issue in contour drawing. His algorithm accumulates a high-
resolution sub-pixel contour image as samples are taken according
to the specifics of the rendering system it is tailored to. The feature
detection and the progressive refinement nature of the method
results in sub-optimal contour fidelity. Moreover, it is not clear how
to vary the stroke style or handle contour intersections consistently
with this approach. Our method considers all sampling data at once
to maximize the quality of the contours and their intersections.

Grabli et al. [2004] introduced a flexible framework that allows
for controlling the line style via custom shaders. They adopt the
edge extraction algorithm of Hertzmann and Zorin [2000] which
operates in object space, making it difficult to support reflection
and refraction. Our image-space method allows for varying the line
style and also supports ray-traced reflection and refraction.

3 OUR METHOD
Our goal is to augment a ray-traced image with lines along cer-
tain features: object silhouettes, intersections between objects, and
creases (i.e. regions of high surface curvature). Additionally, we
allow surface shaders to define custom features, as described below.

We target integration into a production renderer, which produces
a high-quality image by taking a large number of ray samples per
pixel. We want to perform the contour drawing in image space
as a post-process effect so as to avoid invasive modifications to
the renderer. To this end, we take advantage of the dense image
sampling and perform feature detection based solely on comparing
geometric and shading attributes readily stored in the payloads
of pixel samples. Every sample that lies on a feature line has its
color changed to the color of the line. All samples are then fed to
the pixel filter for final averaging, as usual. We next describe these
steps in detail.

3.1 Feature and line attributes
A feature region in the image is one where the visible scene geome-
try changes rapidly. To detect such changes, we look for variations
in the feature attributes of adjacent pixel samples. Four such at-
tributes are readily supplied by the renderer: object ID, shader ID,
texture coordinate, and surface normal. We also allow shaders to
output an additional “feature color” at every surface point. This at-
tribute is quite versatile: for example, a shader can assign a different

Figure 2: The method of Choudhury and Parker [2009] does
not consider line intersections and produces conspicuous
aliasing (left). Our method renders these correctly (right).

constant color to every polygon or black/white colors correspond-
ing to the object’s shadowed/lit regions. Our algorithm will then
detect the edges in this output and draw corresponding lines, e.g.
along the polygon edges (see the ground plane in Fig. 1, right) or
the shadow boundaries.

At every surface point, shaders can also optionally output line
attributes: color and thickness. These override the user-specified
global line attributes and allow for creating style variations along
the feature lines, e.g. driven by textures or the illumination (see the
car in Fig. 1, right).

3.2 Feature detection and line shading
Image-space methods draw lines by altering the colors of pixel
samples that lie near features edges. Traditionally this is done by
blending between the input ray-traced color and the line color,
based on the feature strength and/or the sample’s image-space
proximity to the feature edge [Bauer 2017; Choudhury and Parker
2009]. While good for anti-aliasing, this approach has difficulties
handling varying stroke styles and line intersections, and it is also
prone to producing artifacts. For example, the edge strength met-
ric of Choudhury and Parker [2009] assumes that a pixel sample
can lie near at most one, straight feature edge, causing unnatural
brightening in regions with curved edges, or where several edges
meet as we illustrate in Fig. 2, left.

Our approach to solving these issues is to treat the feature lines as
opaque pieces of geometry that, even though defined and drawn in
image space, are attached to the 3D scene objects and can therefore
intersect and occlude each other. A pixel sample can then “see”
only the topmost of potentially several overlapping lines. We test
every sample for line intersection by performing a ray-tracing-like
operation in image space.

Given a sample, henceforth referred to as target sample, we look
for potential feature line intersections by comparing the target’s
five feature attributes to those of every other sample in its vicinity,
henceforth called neighbor samples. The neighborhood is a disk-
shaped stencil, illustrated in Fig. 3, left, with diameter equal to the
maximum possible line width, which is specified by the user. If a
neighbor sample has an attribute sufficiently different from that of
the target, according to a user-specified threshold, then the target
sample potentially lies on a feature line. For texture coordinates
we threshold the texture-space distance, for normals the angle, and
the feature color difference is thresholded per color channel.

To obtain a valid line intersection, the image-space distance to
the neighbor sample must be smaller than half the width of the

Production Ray Tracing of Feature Lines SA ’18 Technical Briefs , December 4–7, 2018, Tokyo, Japan

123456

7 8 9

141312

10

11

1

2

3

4

5
6

7

8
9

14

13

12

10

11

Figure 3:We test every pixel sample for feature line intersec-
tion by inspecting the samples in a circular neighborhood
around it (left) in front-to-back order (right). In this exam-
ple, the target sample (in white) hits the pink object but lies
on the silhouette line of the blue object; the gray samples do
not intersect any geometry.

tested line. The target and the neighbor samples will generally have
different line widths defined by their corresponding surface shaders.
One of the two samples should take priority in specifying the line
attributes, and by default this is the one with the shorter ray hit
distance. This ensures that we draw the correct silhouette lines of
every object, as styled by its associated shader, on top of the objects
behind it.

Since we only need to find the closest line intersection at the
target sample, we iterate over the target-neighbor pairs in order of
decreasing priority, i.e. by the depth of the priority sample in every
pair, as illustrated in Fig. 3, right. This ensures that we test the lines
in front-to-back order. If two or more pairs have the same priority,
they are checked in order of increasing target-neighbor distance in
image space. As soon as a valid intersection is found, we terminate
the search and set the color of the target sample to the line color of
the pair’s priority sample. For artistic flexibility we also allow the
priority to be manually overridden, as we discuss next.

3.3 Line priority
When two objects with different line styles intersect, the above
described algorithmwill draw half of each line style on the two sides
of the intersection edge. This can result in a dual-color line, which
is not always desired. To avoid this, and for better artistic control,
we allow the user to set explicit priorities to objects. These take
precedence over the default depth-based criterion for determining
sample priority. When set, only the line of the higher-priority object
will be drawn, with full width. An example is shown in Fig. 4, left,
where by default double lines are drawn along object intersection
edges. Setting object priorities results in a more pleasant look in
Fig. 4, middle.

3.4 Reflection and refraction
Extending our method to draw feature lines in specular reflections
and refractions is relatively straightforward. To that end, we store
the tree of reflection and refraction events associated with every
pixel sample, and record feature and line attributes for every tree
node. The leaves of the tree are the non-reflective/refractive ray

Figure 4: Line priority is by default determined by the dis-
tance along the ray, where the shorter wins (left). Per-object
user-set priorities are also supported (middle); here the
cylinders have the highest priority and the ground plane has
the lowest. Additionally tinting the line colors of reflected
and refracted objects gives a more realistic result (right).

hits where the ray recursion terminates. (For samples that hit such
surfaces directly from the camera, the ray tree is made of just a
single leaf node.)

We first run our feature detection algorithm on the attributes at
the root node of every sample, which correspond to the primary ray
hits. Then, we identify the samples that have not yet intersected
a line and run the same process again only for those samples, this
time considering the primary reflection attributes. Samples that
have not hit a reflective surface (i.e. have null reflection attributes)
are not considered. We then repeat the process by considering
the refraction attributes, and so on. Thus, the attribute trees of all
samples are traversed in sync, in breath-first order, such that the
lines of reflected objects cover those of refracted objects.

While feature detection is performed solely in image space, by
caching the throughput of the corresponding ray paths in the tree
nodes, the line colors can be additionally tinted to make them
appear reflected or refracted. This gives more realistic results, as
seen in Fig. 4, right.

3.5 Handling thin lines
In order to draw thin contour lines without excessive noise, we
impose a minimum line width in image space, relative to the pixel
size. This technique is typically used to prevent aliasing of thin
hair or grass curves by expanding their width so that they cover at
least a specified distance across a pixel, and compensating for this
expansion by making the curves proportionately more transpar-
ent [Cook et al. 2007; Georgiev et al. 2018]. The same approach is
directly applicable to our contour line drawing. Excessive widening
of the lines changes the look, so instead of exposing the minimum
width as a user parameter, we fix it to half the pixel size (see Fig. 5).

SA ’18 Technical Briefs , December 4–7, 2018, Tokyo, Japan Shinji Ogaki and Iliyan Georgiev

Figure 5: Lines with width driven by a noise function, at 9
samples/pixel. Theminimum line width (MLW) is, from left
to right: 0, 0.5, and 1 pixel. We fail to capture thin lines with
MLW=0, and setting MLW=1 changes the look too much.

4 RESULTS, LIMITATIONS, FUTUREWORK
We have implemented our feature line drawing method in the
Arnold production ray tracer [Georgiev et al. 2018]. Being an image-
space filter, our algorithm can handle complex geometry and arbi-
trary camera projections. We are also free to use any surface shader,
and purpose-built shaders can provide additional feature and line-
style attributes. Figure 1 showcases our implementation, where in
the image on the right the line style is driven by the illumination.

Besides the general limitations of image-space contour drawing,
our method can suffer from a few other issues. First, lines can
be missed when a no-line object is placed in front of a thick-line
object and their silhouettes overlap, as seen in Fig. 6. The issue
could be addressed by computing the intersections of multiple
objects along every ray instead of just the closest one [Wald et al.
2018]. Storing several sets of feature attributes per sample, one
set for every intersected object, would enable edge detection for
non-directly visible objects.

Another issue is the performance drop with large numbers of
neighbor samples in the stencil due to thick lines and excessively
high pixel-sampling rates. Fortunately, this is not a critical issue in
practice, since lines are typically at most a few pixels wide. High
sampling rates also increase the memory consumption of the per-
sample attribute caching. To ameliorate this and keep memory
usage low, we render and post-process the image in small tiles.

Our method is incompatible with blurry effects like glossy re-
flection/refraction, depth of field, and motion blur. In the presence
of such effects, neighbor samples can have very different attributes
and our algorithm ends up finding features everywhere. In fact,
meaningfully defining contours for such effects remains an open
problem. We have seen some demand for blurring edges when ren-
dering with depth of field and would like to investigate how to do
this. One option for motion blur could be to use deterministic time
sampling. This would result in a stroboscopic effect that might be
preferred, on top of which motion lines can be additionally drawn.

Drawing dashed lines or lines with distance-varying style re-
quires the ability to identify the lines’ endpoints and to measure
distances along them. This is something we would like to look into.

Lastly, for stereoscopic viewing we render the left- and right-eye
images completely independently. While we have not yet experi-
enced serious issues with this simple approach, it is prone to causing
viewing discomfort, which can be mitigated by drawing the feature
lines in a stereo-consistent way [Bukenberger et al. 2018].

Figure 6: A difficult case for our method, which fails to draw
the silhouette of the rectangle in regions where it is covered
by the no-silhouette sphere.

ACKNOWLEDGMENTS
The authors thank Lee Griggs for rendering the images in Fig. 1:
The space ship model is from mecabricks.com, the robot was mod-
eled by Stas Gorshenin, and the Pepe model was created by Daniel
Martinez Lara.

REFERENCES
Andreas Bauer. 2017. A New Contour Method for Highly Detailed Geometry. In

ACM SIGGRAPH 2017 Talks (SIGGRAPH ’17). ACM, New York, NY, USA, Article 71,
2 pages. https://doi.org/10.1145/3084363.3085052

Dennis R. Bukenberger, Katharina Schwarz, and Hendrik P. A. Lensch. 2018. Stereo-
Consistent Contours in Object Space. Comput. Graph. Forum 37, 1 (2018), 301–312.
https://doi.org/10.1111/cgf.13291

A. N. M. Imroz Choudhury and Steven G. Parker. 2009. Ray Tracing NPR-style Fea-
ture Lines. In Proceedings of the 7th International Symposium on Non-Photorealistic
Animation and Rendering (NPAR ’09). ACM, New York, NY, USA, 5–14. https:
//doi.org/10.1145/1572614.1572616

Robert L. Cook, John Halstead, Maxwell Planck, and David Ryu. 2007. Stochastic
Simplification of Aggregate Detail. ACM Transactions on Graphics 26, 3 (2007).

Iliyan Georgiev, Thiago Ize, Mike Farnsworth, Ramón Montoya-Vozmediano, Alan
King, Brecht Van Lommel, Angel Jimenez, Oscar Anson, Shinji Ogaki, Eric Johnston,
Adrien Herubel, Declan Russell, Frédéric Servant, and Marcos Fajardo. 2018. Arnold:
A Brute-Force Production Path Tracer. ACM Trans. Graph. 37, 3, Article 32 (Aug.
2018), 12 pages. https://doi.org/10.1145/3182160

Stéphane Grabli, Emmanuel Turquin, Frédo Durand, and François X. Sillion. 2004. Pro-
grammable Style for NPR Line Drawing. In Proceedings of the Fifteenth Eurographics
Conference on Rendering Techniques (EGSR’04). Eurographics Association, Aire-la-
Ville, Switzerland, Switzerland, 33–44. https://doi.org/10.2312/EGWR/EGSR04/
033-044

Aaron Hertzmann and Denis Zorin. 2000. Illustrating Smooth Surfaces. In Proceedings
of the 27th Annual Conference on Computer Graphics and Interactive Techniques
(SIGGRAPH ’00). ACM Press/Addison-Wesley Publishing Co., New York, NY, USA,
517–526. https://doi.org/10.1145/344779.345074

Yongjin Kim, Jingyi Yu, Xuan Yu, and Seungyong Lee. 2008. Line-art Illustration of
Dynamic and Specular Surfaces. In ACM SIGGRAPH Asia 2008 Papers (SIGGRAPH
Asia ’08). ACM, New York, NY, USA, Article 156, 10 pages. https://doi.org/10.1145/
1457515.1409109

Ingo Wald, Jefferson Amstutz, and Carsten Benthin. 2018. Robust Iterative Find-Next-
Hit Ray Traversal. In Eurographics Symposium on Parallel Graphics and Visualization,
Hank Childs and Fernando Cucchietti (Eds.). The Eurographics Association. https:
//doi.org/10.2312/pgv.20181092

https://doi.org/10.1145/3084363.3085052
https://doi.org/10.1111/cgf.13291
https://doi.org/10.1145/1572614.1572616
https://doi.org/10.1145/1572614.1572616
https://doi.org/10.1145/3182160
https://doi.org/10.2312/EGWR/EGSR04/033-044
https://doi.org/10.2312/EGWR/EGSR04/033-044
https://doi.org/10.1145/344779.345074
https://doi.org/10.1145/1457515.1409109
https://doi.org/10.1145/1457515.1409109
https://doi.org/10.2312/pgv.20181092
https://doi.org/10.2312/pgv.20181092

	Abstract
	1 Introduction
	2 Related Work
	3 Our method
	3.1 Feature and line attributes
	3.2 Feature detection and line shading
	3.3 Line priority
	3.4 Reflection and refraction
	3.5 Handling thin lines

	4 Results, limitations, future work
	Acknowledgments
	References

