Understanding and Mitigating Linear Buckling

Tutorials

Linear buckling typically occurs when there is a sudden loss in stiffness due to compressive loading. It’s a problem that you swiftly want to avoid within your designs – so let’s take a look at its root causes and how to mitigate the problem.

Screen Shot 2017-01-30 at 4.29.39 PM

As an engineer, designing around failure modes will likely involve some form of finite element analysis (FEA). In order to analyze the factor of safety properly on an element, however, you need to identify the failure mode. While yielding is certainly the most common, it’s not the only mode of failure. Yielding tends to be somewhat predictable in a material, but other modes of failure like linear buckling can occur suddenly without any warning.

Linear buckling has the possibility of occurring on any thin member of a design. Its root cause lies in the thickness of the member in relation to the stress elements. As a small displacement occurs internal to a member due to an applied load, there appears a stiffening within any given element. This loading produces a stress dependent stiffening effect which compounds onto the linear static stiffness of the member. When the stress-dependent stiffness internal to a member overcomes the linear static stiffness, buckling occurs. To explain it more simply, when a component is placed under a load that causes large internal stresses relative to the material stiffness, it buckles.

Now that we understand how and why a component linearly buckles, let’s look at the analysis techniques you can use to determine if a member in your design is at risk.

When determining how or if a component will fail through linear buckling, one needs to find the first positive buckling mode. There may be many buckling modes for a component, but due to the catastrophic nature of buckling failures, a component will likely never undergo more than one buckling event. As a program undergoes FEA, it calculates the buckling load factors to produce the ultimate load magnitude. This load is almost always overestimated in analysis and the results output are normally nonconservative. Most FEA programs analyze a component as a smooth solid member without imperfections. In actuality, manufactured parts have imperfections – whether that be a chip or an uneven face. As a result of the combined imperfections in the analysis from minor mathematical flaws and more major modeling issues, the results of Linear FEA tend to be more cautionary than absolute.

With the implementation of Nastran In-CAD inside of Inventor or SolidWorks, problems of linear buckling can be solved as part of your normal workflow. After completing your yield analysis on a member, you can simply change your stress analysis to a linear buckling type. This allows you to keep your previous loading conditions and determine the maximum loading before a part buckles. You can see more in the video below.



Trevor English

Trevor is a civil engineer (B.S.) who has made a career out of engineering and technical communication. His work has appeared on Curiosity, BBC, Interesting Engineering and other sites across the web. Originally the Chief editor for Interesting Engineering back in 2016, he now works with software & tech companies, aiding them in content marketing and technical communication. Currently living in Texas, he’s also a published children’s book author and producer for the YouTube channel Concerning Reality.

Related Articles

______
icon-svg-close-thick

Cookie preferences

Your privacy is important to us and so is an optimal experience. To help us customize information and build applications, we collect data about your use of this site.

May we collect and use your data?

Learn more about the Third Party Services we use and our Privacy Statement.

Strictly necessary – required for our site to work and to provide services to you

These cookies allow us to record your preferences or login information, respond to your requests or fulfill items in your shopping cart.

Improve your experience – allows us to show you what is relevant to you

These cookies enable us to provide enhanced functionality and personalization. They may be set by us or by third party providers whose services we use to deliver information and experiences tailored to you. If you do not allow these cookies, some or all of these services may not be available for you.

Customize your advertising – permits us to offer targeted advertising to you

These cookies collect data about you based on your activities and interests in order to show you relevant ads and to track effectiveness. By collecting this data, the ads you see will be more tailored to your interests. If you do not allow these cookies, you will experience less targeted advertising.

icon-svg-close-thick

THIRD PARTY SERVICES

Learn more about the Third-Party Services we use in each category, and how we use the data we collect from you online.

icon-svg-hide-thick

icon-svg-show-thick

Strictly necessary – required for our site to work and to provide services to you

Qualtrics
W
Akamai mPulse
W
Digital River
W
Dynatrace
W
Khoros
W
Launch Darkly
W
New Relic
W
Salesforce Live Agent
W
Wistia
W
Tealium
W
Upsellit
W
CJ Affiliates
W
Commission Factory
W
Google Analytics (Strictly Necessary)
W
Typepad Stats
W
Geo Targetly
W
SpeedCurve
W
Qualified
#

icon-svg-hide-thick

icon-svg-show-thick

Improve your experience – allows us to show you what is relevant to you

Google Optimize
W
ClickTale
W
OneSignal
W
Optimizely
W
Amplitude
W
Snowplow
W
UserVoice
W
Clearbit
#
YouTube
#

icon-svg-hide-thick

icon-svg-show-thick

Customize your advertising – permits us to offer targeted advertising to you

Adobe Analytics
W
Google Analytics (Web Analytics)
W
AdWords
W
Marketo
W
Doubleclick
W
HubSpot
W
Twitter
W
Facebook
W
LinkedIn
W
Yahoo! Japan
W
Naver
W
Quantcast
W
Call Tracking
W
Wunderkind
W
ADC Media
W
AgrantSEM
W
Bidtellect
W
Bing
W
G2Crowd
W
NMPI Display
W
VK
W
Adobe Target
W
Google Analytics (Advertising)
W
Trendkite
W
Hotjar
W
6 Sense
W
Terminus
W
StackAdapt
W
The Trade Desk
W
RollWorks
W

Are you sure you want a less customized experience?

We can access your data only if you select "yes" for the categories on the previous screen. This lets us tailor our marketing so that it's more relevant for you. You can change your settings at any time by visiting our privacy statement

Your experience. Your choice.

We care about your privacy. The data we collect helps us understand how you use our products, what information you might be interested in, and what we can improve to make your engagement with Autodesk more rewarding.

May we collect and use your data to tailor your experience?

Explore the benefits of a customized experience by managing your privacy settings for this site or visit our Privacy Statement to learn more about your options.